当前位置: 论文资料 >> 理学论文 >> 数学 >> “等”对“不等”的启示
“等”对“不等”的启示
  对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示.
 1.否定特例,排除错解
 解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示.
 例1 满足sin(x-π/4)≥1/2的x的集合是().
A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z}
B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z}
C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z}
D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题)
 分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A.
 例2 不等式 +|x|/x≥0的解集是().
A.{x|-2≤x≤2}
B.{x|- ≤x<0或0<x≤2}
C.{x|-2≤x<0或0<x≤2}
D.{x|- ≤x<0或0<x≤ }
 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B.
 这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围.
 例3 解不等式loga(1-1/x)>1.(1996年全国高考试题)
 分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑.
 上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路.
 2.诱导猜想,发现思路
 当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用.
 例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题)
 分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化.
 1/a3(b+c)+(b+c)/4bc≥ =1/a,
 1/b3(a+c)+(a+c)/4ca≥1/b,

[1] [2] [3] 下一页  


相关文章列表:
  • 美国内部审计发展现状及对我国的启示

  • 资本弱化税制:安全港规则的国际应用实践及启示

  • 毛泽东政治权威的思考与启示

  • 九运会交通组织经验与启示

  • 西方主要国家的高校学生责任教育与启示

  • 适时管理对学校人力资源开发的启示

  • 美国远程教育政策和原则的分析与启示

  • 行为主义政治学的“新革命”及其启示

  • 等效原理的对与错

  • 澳大利亚行政法中的程序公平原则-兼论对中国行政程序立法的启示