当前位置: 论文资料 >> 理学论文 >> 数学 >> “简易逻辑”教学中存在的问题——兼答《关于命题的困惑》一文中的“困惑”
“简易逻辑”教学中存在的问题——兼答《关于命题的困惑》一文中的“困惑”
  1 关于命题的两个定义
 关于命题,初中的定义是:判断一件事情的语句叫命题;高中的定义是可以判断真假的语句叫命题.这两个定义都不严格.两个定义中使用的“判断”一词,与语文中通常的意义不尽相同.在逻辑学上,它的意义是:判断是对客观事物有所肯定或否定的思维形式,判断有真有假.所以,初中和高中的两个定义在意义上是完全相同的:命题是这样一个语句,这个语句能够判断真假.例如语句“4的平方根是2”,作为一个判断,它是错误的,所以它是命题,是假命题.
 2 关于“或”、“且”的含义
 复合命题“p或q”与“p且q”是用逻辑联结词“或”与“且”联结两个命题p与q,既不能用“或”与“且”去联结两个命题的条件,也不能用它们去联结两个命题的结论.
  例1 (1)已知p:方程(x-1)(x-2)=0的根是x=1;
  q:方程(x-1)(x-2)=0的根是x=2,
  写出“p或q”.
  (2)p:四条边相等的四边形是正方形;
  q:四个角相等的四边形是正方形,
  写出“p且q”.
  错解:(1)p或q:方程(x-1)(x-2)=0的根是x=1或x=2;(2)p且q:四条边相等且四个角相等的四边形是正方形.
  分析:(1)(2)两题中的p、q都是假命题,所以“p或q”、“p且q”也都是假命题,而上述解答中写出的两个命题却都是真命题.错误的原因是:(1)联结了两命题的结论;(2)联结了两命题的条件.
  正确的答案是:
  (1)p或q:方程(x-1)(x-2)=0的根是x=1或方程(x-1)(x-2)=0的根是x=2.
  (2)p且q:四条边相等的四边形是正方形且四个角相等的四边形是正方形.
  这两个命题都是假命题.
  但是,在不影响命题真值的情况下,又可省略第二个命题的主语,这是符合语言习惯的.
  例2已知p:菱形的对角线互相平分;
       q:菱形的对角线互相垂直,
写出“p且q”.
  解:p且q:菱形的对角线互相平分且(菱形的对角线互相)垂直.
  这个命题中括号内的部分可以省略.
  文[1]中“4的平方根是2,或4的平方根是-2”,就不能简写成“4的平方根是2或-2”.
  3 关于“非”的含义
  “非”的含义有下列四条:
  3.