当前位置: 论文资料 >> 证券金融 >> 证券投资 >> 当代证券市场研究的发展趋势
当代证券市场研究的发展趋势
内容提要:近二十年来,证券市场的研究呈现出新的特点和趋势,这些特点和趋势可以概括为:从原来线性的、完全理性的观点到非线性、有限理性的转变;从市场宏观层面的研究到微观结构的研究;计算机技术的发展促进了实验金融学的产生和发展。相应地诞生了一些新的理论和方法,本文简要介绍了当前兴起的理论,包括行为金融学、证券市场非线性动力学研究、市场微观结构和实验金融学。

  以有效市场假说(Efficient Market Hypothesis,EMH)和理性预期(Rational Expectation Hypothesis,REH))为特征的主流金融理论在金融领域中一直占据着统治地位。但大量的实证研究和观察结果表明,人们并不总是以理性态度做出决策,在现实中存在诸多的认知偏差,这些偏差不可避免地要影响到人们的金融投资行为,进而影响到资产定价,主流金融学有着无法克服的缺陷。Richard H.Thaler(1999)具体指出了在以下五个方面标准金融模型与实际不符:关于交易量的预测;关于波动性的预测;关于股票红利无关性;关于股票投资溢价;关于有效市场上证券价格的不可预测性。

  1997至1998年的亚洲金融危机和最近一系列金融事件如美国股市在2000年的大起大落、长期资本基金(LTCM)的破产保护、老虎基金的倒闭等,也更加深了人们对市场有效性及投资理性的怀疑。在学术研究和金融实务中,正有越来越多的人认识到,人的行为、心理感受等主观因素在金融投资决策中起着不可忽略的作用。

  正是对主流金融理论的质疑,促使了金融研究范式的转换,极大地促进了新的理论和方法的产生和发展。近二十年来,金融学研究呈现出新的特点和趋势,这些特点和趋势可以概括为:从原来线性的、完全理性的观点到非线性、有限理性的转变;从市场宏观层面的研究到微观结构的研究;计算机技术的发展促进了实验金融学的产生和发展。

  一、从完全理性到有限理性——行为金融学

  在传统的经济、金融学研究中,现实的人被简化为一个简单的理性人,即假定人们能掌握处理所有有用信息,总是能最大化其预期效用,显然这种假定是不现实的。这种以完全理性假定构筑的学说是无法通过经验科学方法来检验与研究人的内在本性的,也无法观察现实人的经济行为。

  对完全理性的质疑,促使人们尝试用心理学方法来研究经济、金融问题,并试图以此来修正和检验经济、金融学的基本假设,于是便应运诞生了一门新学科——行为金融学。目前,对“行为金融学”一词还没有正式规范的定义,它主要从实证的角度研究人们如何理解和利用信息,并做出正式的投资决策,以及在此过程中,人的行为认知偏差对决策的影响。田宏伟(2001)认为构成行为金融学定义的内容有三个方面:行为金融学把经典的经济学和金融学理论与心理学和决策科学综合在了一起;行为金融学力图解释是什么造成了股票/证券价格的异常现象,这种异常已被众多的研究证明是广泛存在的;行为金融学是一门研究投资者是如何产生系统的认知偏差或称为有限理性(不完全理性)的科学。

  事实上,正是因为投资者会产生系统的认知偏差或不完全理性,才导致证券价格出现各种异常。至于到底有哪些价格异常现象,它们又是由什么样的不完全理性行为造成的,如何确定价格异常出现的市场条件,正是行为金融学的研究内容所在。从总体上看,现有行为金融学的研究是在两个方向上展开的:一是对主流金融理论缺陷的实证分析,研究在金融市场上发现的人们的诸多行为认知偏差;二是试图从心理学、社会学、人类学、认知心理学的角度来认识金融市场上的异常现象。

  ·噪声交易理论

  Fischer Black(1986)首次提出关于噪声交易的概念,他的论文是噪声交易理论以及行为金融学研究的奠基性文章,是许多随后研究的出发点。Black指出,噪声的概念与信息的概念相对应,一直存在于金融市场中,而股价则综合反映了噪声与信息的影响。股票投资者也被分为噪声交易者和信息交易者。噪声交易理论近年来取得了很大进展,已成为行为金融学的重要工具。

  J.Bradford De Long,Andrei Shleifer,Lawrence H.Summers and Robert J.Waldmann(1990)研究了金融市场上的噪声交易者风险,得到的结论是噪声交易者通过承担更多的由他们自己创造的风险(噪声交易者风险),可以比厌恶风险的理性套利者获得更高的回报。

  Lawrence H.Summers(1986)的研究也认为,股票的市场价格会对非理性投资者的投资行为更敏感,因为当理性投资者接受市场价格是其基本价值的体现,并且不以自己对价值的判断作为交易的依据时,非理性投资者则相反,他们按自己对价值的(错误)判断作为交易的依据,这时市场价格就会对非理性投资者更敏感。

  ·期望理论

  在行为金融学模型中,由卡尼曼(Daniel Kahneman)和已故的特韦尔斯基(Amos Tver- sky)提出并发展起来的期望理论无疑是影响最为深远的一个(Daniel Kahneman,and Amos Tversky(1979,1992)),它向传统的预期效用理论提出了强有力的挑战。Daniel Kahneman因此获得了今年诺贝尔经济学奖。

  不可否认,预期效用理论至今仍是现代经济理论的重要支柱之一,它给出了不确定性条件下的理性行为的简单精确描述。然而,正如前文所述,实际情况下人的行为并不总是理性的,这使得效用理论在应用中会产生矛盾现象,最著名的当属阿莱悖论。Kahneman— Tversky的期望理论的提出,改进了预期效用理论的不足。在期望理论中,投资者的效用(价值)不再是财富的函数,而是获利与损失的函数;投资者也不再总是风险厌恶者。图1.1、图1.2分别是预期效用理论与期望理论的效用/价值函数。

  可以看出,与标准效用函数相比,期望理论的效用函数呈“S”型——在获利区间凹,在损失区间凸,这与对人们风险偏好的实际观察结果是一致的(即损失厌恶)。

  通过引入价值函数、概率评价函数、参考点等概念,期望理论更好地描述了人们在不确定性条件下的决策行为。许多异常现象可以用期望理论来做出合理的解释,如阿莱悖论、证券溢价之谜、期权微笑现象等。

  ·过分自信理论

  人们往往过于相信自己的判断能力,高估自己成功的机会,我们把这种心理现象称为过度自信。过度自信解释了许多股价异常现象,如过度反应与反应不足。

  W.M.De Bondt,Richard H.Thaler(1986)的文章“股票市场过分反应了吗?”是实证检验美国股票市场是否存在过度反应的奠基性作品。他们的答案是肯定的,并指出过度反应与反应不足的原因都在于投资者的过分自信。

  Terrance Odean(1998)对过分自信理论进行了详细综述和研究,并建立了过分自信的行为金融模型。由于过分自信,投资者有时会高估某些信息,有时又会低估,过分自信对金融市场的具体影响要看哪些市场参与者会过分自信以及信息是如何传播的。

  首先,两个前提假设是:过分自信意味着交易者认为后验信息更准确(比实际上的准确性更高);交易者认为自己的私有信息比别人的私有信息更加可靠。

  通过分别假定一般交易者、内幕信息交易者和厌恶风险的做市商存在过分自信,Terrance Odean分析了金融市场存在信息成本时的过分自信效应。在各种情形下,过分自信都会增大成交量和市场深度,同时降低投资者的预期效应。但是,对价格波动性和价格内在性质(以价格与基本价值差额的方差来衡量)的影响则依赖于过分自信的主体是谁。一般交易者和内幕信息交易者过分自信会增加波动性,做市商过分自信会减少波动性。

  ·主观概率理论

  主观概率指的是人们对某一特定命题正确性的相信程度。主观性体现在它是基于个人的知识和信念做出的评价。主观概率研究的重要性在于它是决策过程的关键环节。

  传统概率论以及在此基础上发展起来的 Bayesian决策准则所关注的都是事件发生的频率,其前提是事件能够反复发生。而对于一次性事件的概率估计,它们是不适用的。现实中人们又确实经常需要对不同的命题做出自己的评估。研究表明,人们在做出这类评估时,由于受到自身条件和知识能力的限制,无法得到最优结果,只能在一定程度上得到满意解,这使得人们可以凭直觉和个人经验解决复杂问题。这种实际决策过程的本质特点,促使科学家从行为认知的角度来研究决策过程,Amos Tversky和Daniel  Kahneman是其中的佼佼者。他们试图用启发式方法来代替Bayesian分析。这一领域的研究被称为主观概率研究,期望理论其实是主观概率理论中的一种。

  二、从线性到非线性——非线性科学的应用

  在人类的认识上,首先是用相对简单的线性关系(线性模型)来刻画线性问题的定量关系,对于那些非线性因素不能忽略的情况,则往往采取线性近似或线性迭代的方法来处理,这样处理有时也能得到较好的结果,但这种情况一般只出现在比较“简单的”非线性问题中,或者只是研究系统的一些“常规”行为特征。随着人们对社会、  自然认识的不断深化,人们越来越不敢“小看”非线性问题了。首先,就其本质而言,自然界是非线性的。其次,许多问题中的强非线性作用与长时间尺度的系统行为都不能用线性方法(包括线性近似)来刻画。第三,即使是一些表面看上去很简单的系统,也可能表现出令人惊异的复杂性  (如确定性的随机性),于是,人们愈来愈重视对广泛存在于社会和自然中的非线性现象的研究,并由此而诞生了非线性科学。

  最早将非线性科学用于经济学研究的是美国经济学家斯徒泽(Stuzer),他于1980年发表的论文“一个宏观模型中的混沌动力学系统和分岔理论”,将李—约克(Li—York)定理和分岔技术应用于哈维尔默(Havelmo)增长模型,找到了该模型出现混沌的条件。之后,越来越多的学者开始运用非线性科学的方法来研究经济和金融系统。

  分形学的创始人,  著名的数学家Benoit B.Mandelbrot(1997)将其研究成果应用到金融市场价格变动的研究中,价格的变动可以用分形几何中的研究成果推导的模型加以解释。分形(多分形)的目的并不是要确切地预测未来,但是它们的确能对市场风险作出更切合实际的描述。分形是一种几何形状,其特点是可以分为若干部分,而每一部分都是最初那个整体在较小尺度上的翻版。在金融学中,这一概念并不是无根据的抽象,而是对一种简单明了的市场常识从理论的高度上重新进行表述。

[1] [2] 下一页  


相关文章列表:
  • 中国市场化改革的困境与出路

  • 试论刑法之剑高悬信托市场

  • 公允价值计量:创新公司理财观点的必由之路

  • 市场导向的成本管理——丰田汽车成本企划的实施架构

  • 二板市场:一个基于战略框架的视角

  • 产权交易市场非上市公司股票交易问题研究

  • 行业管制解除后资本市场的反应的研究

  • 成熟市场经济国家的证券市场监管体制——以美国为例

  • 远期交易工具及债券市场的选择

  • 中美权益性证券投资的会计处理比较